Chem. Ber. 114, 1464 – 1475 (1981)

Cycloadditions of Allyl Cations, 261)

Norbornene Derivatives from Cyclopentadiene and 2,4-Dimethyl-3-penten-2-ol in an Acidic Two Phase System. A Stepwise Diels-Alder-like Cyclization²⁾

Heidrun Vathke-Ernst*) and H. M. R. Hoffmann*

Institut für Organische Chemie, Universität Hannover, Schneiderberg 1B, D-3000 Hannover

Received September 1, 1980

2,4-Dimethyl-3-penten-2-ol (1) and cyclopentadiene react in an acidic two phase system at 0-25 °C in several steps yielding epimeric norbornenylcarbinols (*endo*-4 and *exo*-4) and at least three isomeric allylcyclopentenols (2a, b, c), whereas allylcyclopentadienes (3a, b) and norbornene-type olefins (*endo*-5, *exo*-5, and 6) are formed in traces under these conditions. All bicyclic products of this reaction were synthesized independently. On subjecting the pure product norbornenylcarbinols (*endo*-4 and *exo*-4) to the acidic, two phase reaction conditions at slightly elevated temperature, i. e. 50°C, some epimerization occurs and the norbornene-type olefins (*exo*-5, *endo*-5, and 6) are mainly formed in addition to allylcyclopentadienes (3a,b), allylcyclopentenols (2a, b, c), nortricyclic alcohol 7, and tricyclic ether 8. Independently, the forward reaction was traced by subjecting the isomeric allylcyclopentenols 2b, c to the acidic, two phase reaction conditions at 7. Hence, a stepwise Diels-Alder-like cyclization is proposed to account for the norbornene-type alcohols and bicyclic olefins, which are formed from the acid promoted reaction of cyclopentadiene and 1.

Cycloadditionen von Allyi-Kationen, 261)

Norbornenderivate aus Cyclopentadien und 2,4-Dimethyl-3-penten-2-ol in einem sauren Zweiphasensystem. Eine stufenweise Diels-Alder-ähnliche Cyclisierung²⁾

2,4-Dimethyl-3-penten-2-ol (1) und Cyclopentadien reagieren in einem sauren Zweiphasensystem bei 0-25 °C in mehreren Schritten unter Bildung epimerer Norbornenylcarbinole (endo-4 und exo-4) sowie von mindestens drei isomeren Allylcyclopentenolen (2a, b, c). Allylcyclopentadiene (3a, b) und Olefine vom Norbornentyp (endo-5, exo-5 und 6) werden unter diesen Bedingungen in Spuren gebildet. Alle bicyclischen Produkte dieser Reaktion wurden unabhängig synthetisiert. Wenn die reinen Produkt-Norbornenylcarbinole (endo-4 und exo-4) den sauren Zweiphasenbedingungen bei leicht erhöhter Temperatur, d. h. 50°C, unterworfen werden, tritt teilweise Epimerisierung ein, und es bilden sich hauptsächlich Olefine vom Norbornentyp (exo-5, endo-5 und 6) neben Allylcyclopentadienen (3a, b) sowie Allylcyclopentenole (2a, b, c), Nortricyclylalkohol 7 und tricyclischer Ether 8. Unabhängig wurde die Vorwärtsreaktion sichtbar gemacht, indem die isomeren Allylcyclopentenole 2b, c den sauren Zweiphasenbedingungen bei 50°C unterworfen

^{*)} Present address: BASF Hauptlabor, D-6700 Ludwigshafen.

The activation of allyl alcohols toward formation of allyl cations via low temperature trifluoroacetylation followed by zinc halide promoted alkyl-oxygen fission has been reported recently³⁾. We now describe a still simpler method of activation which is applicable to allyl alcohols with a weak carbon-oxygen bond, i.e. allyl alcohols giving a comparatively stable allyl cation. The method will be exemplified by the acid induced two phase reaction of 2,4-dimethyl-3-penten-2-ol (1) and cyclopentadiene.

Results

Although cyclopentadiene has long been known to be prone to dimerization and formation of deeply colored polymers under the influence of acids⁴, we now show that it survives in an acidic two phase system to react with allyl alcohol 1, giving mainly monocyclic allyl alcohols **2a**, **b**, **c** and epimeric norbornenylcarbinols *endo*-4 and *exo*-4 as well as some olefins. Chromatography of the more polar alcohols over silica gel for 1 week allowed us to separate various components (Tables 1 and 2). The cyclopentenols **2a** - **c** could easily be discerned by their pleasant odour.

Reaction Time [h]	Reaction Temp. [°C]	% Al 2a, b, c	cohol ^{b)} + 4 [g]	Olefins ^{c)} [g]
1	0	31	1.40	0.36
1	0	31	1.40	0.43
7	0	33	1.48	0.64
7	0	37	1.65	0.66
24	0	35	1.57	0.79
1	25	29	1.32	0.42
1	25	36	1.63	0.69
1	25	38	1.73	0.65
4	25	33	1.48	0.70
4	25	37	1.65	0.75

Table 1. Products from the Reaction of Cyclopentadiene and 2,4-Dimethyl-3-penten-2-ol (1) in	n an
Acidic Two Phase System ^{a)}	

a) Alcohol (1) (2.85 g, 25 mmol) and cyclopentadiene (3.3 g, 50 mmol) in pentane (5 ml) were stirred with water (5 ml) containing *p*-toluenesulfonic acid (2.4 g, ca. 13 mmol). $-^{b}$ 2a, b, c: 4 is ca. 2.4: 1, 2.5: 1. At least three isomeric allylcyclopentenols 2a, b, c are formed (carbowax 20 M); (endo-4): (exo-4) = 2.5: 1. Polymer residue from distillation: 0.13-0.20 g. $-^{c}$) Mainly dicyclopentadiene; 6 (ca. 1%) was isolated by preparative GC (6 m SE 30 column) and also synthesized independently (see text). Further olefin products: 5 (ca. 1%), two substituted cyclopentadienes 3a, b (ca. 1%), dimeric diene $C_{14}H_{24}$ (2-3%). Higher boiling polymers: 0.10-0.30 g.

Among the minor olefins, dicyclopentadiene predominated, whereas the norbornene-type Saytzeff olefin 6 and the epimeric Hofmann olefins *endo*-5 and *exo*-5 (cf.

Chem. Ber. 114 (1981)

% Alcohols ^{b)}	41	33
~	8	œ
°,4	15	17
n 2a,b,c	9	80
Saytzeff: Hofman 6:5	2.7:1	2 :1
(endo-5): (exo-5)	1.4:1	1 :2
% Olefins ^{b)}	48	52
۰	30	31
% v	11	15
3a, b	7	9
g Alcohol): (exo-4) final ^{c)}	1.8:1	1 :1.3
Starting (endo 4 initial	8	2.4:1
Entry	1	2

Table 2. Equilibration of Epimeric Norbornenylcarbinols 4 in Aqueous Toluenesulfonic Acid/Light Petroleum (bp. 60-70°C) at 50°C⁴)

ul) was stirred for 1 h at 50°C with a solution of p-toluenesulfonic acid (2.4 g, ca.	conditions. Tricyclic ether 8 was formed in less than $2\%_0$. $-b)$ $\%_0$ Olefin: $\%_0$ alco-	f the individual products has been determined by integration of appropriate ¹ H	gnals. $-^{d}$ Duplicate experiment with bigger sample of 4. $-^{c}$ Heating at reflux	50°C endo-7 is not discernible (¹ H NMR).
¹ Alcohol 4 (1.80 g, 10 mmol or 4.5 g, 25 mmol) in light petroleum (10 ml) was stirred for 1	3 mmol) in water (5 ml). Olefins 5 and 6 were stable to the equilibration conditions. Tricyclic	ol determined by weighing after chromatography. The concentration of the individual pro	tMR signals. – c) Ratio approximate because of ill-resolved ¹ H NMR signals. – d) Duplica	emperature. -1^{0} (exo-7): (endo-7) = 6.1:1 at reflux temperature. At 50°C endo-7 is not

21 - 25

23.0

51 33 33 34

2.3:1 2 :1 1.3:1 1.2:1 1.7:1

: 2.1 : 3 : 6.8

:5.1 :2.3

34 55 48 49 47 - 56

15

8 8 8 8

2 8

..**3**:1

:2.4 :2.4^{d)}

2.4:1

70)

5 9

4

816

2

1.3:1 1 :1

Ξ.

2.4:1^{d)}

m

2 :1

9 21

3 7 16

20 9 8 8 Scheme 1) were formed in traces (less than 1% each) at 0 and 25° C. We identified these minor, but mechanistically informative olefins by independent synthesis (Scheme 2): AlCl₃ promoted Diels-Alder addition of mesityl oxide to cyclopentadiene gave an epimeric mixture of adducts [(endo-9):(exo-9) = 2.4:1; cf. also Table 2, entries 2 and 3]. Base catalyzed equilibration allowed us to accumulate the more stable exo-epimer [(endo-9):(exo-9) = 1:2.4]⁵. Methylenation⁶⁾ of ketone 9 gave the Hofmann olefins endo-5 and exo-5, whilst methylation with Grignard reagent produced the norbornenyl-carbinols endo-4 and exo-4, which were dehydrated to Saytzeff olefin 6 in addition to other products (Table 2). 6-Isopropylidene-5,5-dimethyl-2-norbornene (6), which may also be regarded as the hypothetical Diels-Alder adduct of cyclopentadiene and tetra-methylallene, was conveniently isolated and purified via its AgNO₃ complex (Table 4). Finally, the pure norbornenylcarbinols obtained as sketched in Scheme 2 were sub-

Scheme 1. Postulated Routes to 2-8 from Acid Catalyzed Two Phase Reaction of Allyl Alcohol 1 and Cyclopentadiene (5, 6, and 7 are mainly formed at 50°C)

Chem. Ber. 114(1981)

jected to the experimental conditions of the two phase system at slightly elevated temperature (50°C vs. 0-25°C). The results of these equilibration experiments are summarized in Table 2. Of course, the equilibrated system is not completely closed, but partially open in that, e.g. leakage into polymer formation is possible. Nonetheless, entries 1 – 5 show that the recovery of olefins + alcohols is 80% and higher, although mechanical losses on, e.g., distillation are inevitable. A major new compound formed at 50°C was a secondary alcohol [¹H NMR, (CD₃)₂SO solvent; IR] of molecular weight C₁₂H₂₀O which had no olefinic protons and was formulated as nortricyclic alcohol 7. A minor C₁₂H₂₀O product (< 2%) formed was tricyclic ether 8.

Scheme 2. Independent Synthesis of Norbornene-Derived Products 4, 5 and 6

Scheme 3. Norbornenes via Rearrangement of [3.2.1] Bicyclics?

Discussion

Once it has been shown that the reactions outlined in Table 1 are indeed feasible, the question arises as to how the various products are formed. It is a fortunate circumstance that the norbornenylcarbinols *endo-4* and *exo-4*, untrammelled by other products, can be subjected to the experimental conditions of running the cycloaddition

Chem. Ber. 114 (1981)

of 1 and cyclopentadiene in Table 1 (same pH, two phases, stirring) and that at the slightly higher temperature they enter into reactions which are not yet or hardly discernible at 25 °C and below. Invoking the principle of microscopic reversibility we may assume that the products of equilibration (Table 2) are on the path of the acid promoted cycloaddition of cyclopentadiene and 1 (Table 1). Now the equilibration of the norbornenylcarbinols *endo*-4 and *exo*-4 can be seen to show up as a back reaction to monocyclic products 2a, b, c and 3a, b as well as a forward reaction to bicyclic olefins *exo*-5, *endo*-5, and 6, and also tricyclic alcohol 7 and tricyclic ether 8. Note that these bicyclic olefins and alcohol 7 (Table 2) are hardly or not at all formed from cyclopentadiene and 1 in the temperature range 0 - 25 °C (Table 1). The results from the acid catalyzed equilibration can be summarized as follows (cf. also Scheme 1):

1) Alcohol endo-4 reacts more readily than alcohol exo-4, consistent with the higher energy content of the endo epimer. Even if the initial endo: exo ratio is high or pure endo-4 is equilibrated, the final (endo-4): (exo-4) ratio is about 1:1 within experimental error. Altogether, the endo series which has the further escape into tricyclic ether 8, is more rapidly depleted than the exo series.

2) Of the two olefinic types, Saytzeff and Hofmann, the Saytzeff olefin 6 always predominates, despite the statistical advantage of Hofmann olefin to exist as stereoisomeric *exo-5/endo-5* mixture. Further, Saytzeff olefin 6 is always the major product at 50° C, with the possible exception of entry 3, where the overall proportion of olefins compared with alcohols is low.

3) Of the epimeric norbornenylcarbinols, alcohol *endo*-4 is more prone to give Saytzeff olefin 6 and, of course, tricyclic ether 8. Conversely, an epimeric mixture rich in *exo*-4 gives a comparatively high proportion of Hofmann olefin 5, especially *exo*-5 (entries 5 and 6). We suggest that loss of the tertiary proton from intermediate cation *exo*-iii with formation of 6 is difficult on stereoelectronic grounds in that the vacant carbenium carbon p orbital and the adjacent tertiary C - H bond in *exo*-iii are nearly orthogonal, whereas the dimethylcarbinyl side chain will be able to rotate more freely in *endo*-iii and hence gives rise to 6 more easily. Control experiments show that the bicyclic olefins 5 and 6 are stable to the equilibration conditions at 50°C.

4) The formation of nortricyclic alcohol 7 from norbornene precursors on equilibration with acid shows that the tricyclic system is comparatively stable, consistent with the equilibrium of the parent system which is on the side of the tricyclic isomer (norbornene: nortricyclene = $23:77^{77}$). We postulated above (cf. 3) that *endo-iii* is more likely to lose the tertiary proton and form 6 than *exo-iii*. On similar grounds, *endo-iii* should suffer 1,2 hydride shift to nortricyclic cation iv more readily than *exo-iii*. At reflux temperature leakage into another nortricyclic alcohol, presumably *endo-7* [(*exo-*7): (*endo-7*) = 6.1:1] is also observed (Table 2, entry 7).

5) Interestingly, our norbornenylcarbinols *endo-4* and *exo-4* must suffer some acid catalyzed epimerization at 50 °C. Note that pure *endo-4* (entry 1) leaks into products of the *exo* series, i.e. alcohol *exo-4* and olefin *exo-5* (ca. 10%).

Thus, the formation of *exo* products is not just the consequence of a selective depopulation of the more reactive *endo* alcohol *endo*-4, but the result of a novel acid promoted *endo/exo* epimerization of a norbornene derivative which we formulate via

Chem. Ber. 114 (1981)

Table 3. Bicycli	ization via	Equilibration	of Isom	eric A	llylcyc	lopentenols 2	in Aqueous Toluenes	ulfonic Acid/Light	Petroleum	(bp. 6	0 - 70 °C) at 50 °C [∎])
Educt	(endo-4) initial): (exo-4) final	3a, b	Ś	ę	% Olefins	(endo-5): (exo-5)	Saytzeff: Hofman 6:5	ⁿ 2a, b, c	4	% Alcohols ^{b)}
2b,c 2c	I I	1:1.3 1:1.6	41 41	~~	28 12	32	1:2 1:2.7	3.4:1 2 :1	m 4	5 1 7 1	2 21 5 26
 a) Cf. Table 2, an unknown ke ture from the v 	footnotes tone (C ₁₂ F ery begint	a) and b) for e 1 ₁₈ 0) were for ning.	xperimei med. It i	s poss	onditio ible th	at this ketone v	l of analysis ^{b)} Ir was formed by aerial	addition 0.13 – 0.2 oxidation of 2s , b ,) g of polyr c and was p	ner an resent	d traces (ca. 5 %) of in the reaction mix-
	1 4010 4. 1		חדוורסוו		dosta	c'c-allaniiddo i		יו וויבטר-ב-כווכ (ס) אוז			piex
Olefin mixture (g)	38° E	duct 5 6	(g) (g)	AgNC (%) (%)) ₃ Coπ	1plex (g) (⁰ %)	Aqueous phase (g) (%)	Remaining 3a, b:5:6	Educt Mothe liquor (g) (⁹	۹. ۱	3a, b:5:6
1.95	12	24 64	2.60	78		2.14 71	0.07 4	1: 9.6:2	0.11	5	1 :8.2:4.7
1.76	31	26 44	1.74	2		1.40 52	0.24 14	1:20 :1	0.12	-	1.5:6.8:1
0.64	11	22ª) 67	0.86	88			0.04 6 ^{b)}				
^{a)} (endo-5):(ex NMR.	o-5) = 1:	1.9. In the aq	ueous ph	lase, ¿	after pr	ecipitation wi	th AgNO ₃ , the ratio	is 1:3.8 ^{b)} Neit	her 3a, b n	or 6 a	re discernible by ¹ H

Chem. Ber. 114 (1981)

fragmentative ring opening to allylcyclopentenyl cation ii. Presumably, ii exists in several conformations. An open conformation seems likely to react with an external nucleophile, i.e. water, to give 2a, b, c or lose a proton to give 3a, b, whereas compact conformations are required for *endo* and *exo* bicyclization.

6) As the norbornenylcarbinols endo-4 and exo-4 may revert to allylcyclopentenols **2a**, **b**, **c**, the key reaction in the forward cycloaddition is formulated as an electrophilic attack of cation i^{*} on cyclopentadiene to give another allyl cation **ii**. We do not believe that the bicyclo [3.2.1] route is followed here which we first established, e.g. for the reaction of cyclopentadiene and the 2-methylallyl cation⁸. Formation of secondary cation **v** (Scheme 3) is thermodynamically unfavourable and subsequent ring contraction of **v** to norbornene derivatives, whilst feasible, requires more forcing conditions in this instance⁹.

7) As a further check on Scheme 1, we have bicyclized the isomeric allylcyclopentenols 2b, c under our general conditions, i.e. in the acidic water-hydrocarbon mixture at 50 °C (Table 3). The product distribution is similar to that obtained from the norbornenylcarbinols 4. If anything, the products of thermodynamic control, i.e. bicyclic olefin 6 (28%) and nortricyclic alcohol 7 (12%), are formed even more prominently here. Formally, the bicyclization of allylcyclopentenols 2b, c represents a novel norbornene synthesis.

8) It is striking that the acid catalyzed two phase reaction of 1 and cyclopentadiene gives ratios of *endo/exo* products, i.e. (*endo-4*): (*exo-4*) = 2.5:1, which are comparable to the AlCl₃ catalyzed cycloaddition of mesityl oxide to cyclopentadiene [(*endo-9*): (*exo-9*) = 2.4:1, cf. Scheme 2]. Thus, the combination of cyclopentadiene and i has characteristics of the bona fide Diels-Alder reaction of cyclopentadiene and mesityl oxide/AlCl₃. Yet, as a major product, isomeric allylcyclopentenols **2a**, **b**, **c** are formed and one hesitates to regard an allyl cation as a classical dienophile, which enters into concerted [4 + 2] additions. A stepwise combination of cyclopentadiene and i, involving a *conformationally free* allylcyclopentenyl cation ii seems equally unsatisfactory, as we would expect *endo/exo* product ratios of thermodynamic control, with the more stable *exo* epimer dominating. It is for these reasons that two oriented ion pairs or π -complexes, i.e. *endo-ii* and *exo-ii*, have been postulated as precursors for the products of the *endo* and *exo* series in the temperature range $0-25^{\circ}$ C (Scheme 1). The AlCl₃ catalyzed cycloaddition should be regarded as mechanistically related.

Conclusions: The reactions which we have described, by virtue of the two phase system and the chosen experimental conditions show the power of microscopic reversibility for tracing reaction paths and for making various intermediates visible. Our work also points to novel ways in which allyl cations can react with conjugated dienes. The reactions are preparatively useful as they can be scaled up, the starting materials being cheap and the reactions being easy to run. Finally, complexation by AgNO₃ appears to be the method of choice for handling 5-alkylidene-2-norbornenes as it is for bicyclo[3.2.1]octa-2,6-dienes⁹.

^{*)} For simplicity ion i is formulated as a symmetrical species, without regard to possible complications due to solvation and ion pairing.

We thank Drs. E. J. Brunke and F. J. Hammerschmidt of Dragoco for GC-MS measurements, K. L. Loening of Chemical Abstracts for help regarding nomenclature, and the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for support of our work.

Experimental Part

IR spectra: Perkin-Elmer 457 and 590. - ¹H NMR spectra: Bruker HX 90 and WH 90. - Mass spectra: Varian CH 5. - Gaschromatography: Varian 1400 FID, N₂ as carrier gas. - Preparative GC: Wilkens A 700 Autoprep.; thermal conductivity detector, H₂ as carrier gas, 6m 5% SE 30 column. - Chromatography: Silica gel 0.2–0.5 mm (technical) and 0.05–0.2 mm (Macherey-Nagel). - Microanalyses: Frau *E. Jirotka*, Institut für Organische Chemie, Universität Hannover.

2,4-Dimethyl-3-penten-2-ol (1) (cf. also ref. ¹⁰): Magnesium turnings (36.5 g, 1.5 mol) in absol. ether (150 ml) are allowed to react with some methyl iodide [ca. 1/20 of 1.5 mol (10.7 g)]. After the reaction has started the remaining methyl iodide in ether (250 ml) is dropped in at a rate which sustains gentle boiling of the ether. The solution is refluxed for 0.5 - 1 h and cooled to $0 - 5 ^{\circ}$ C (ice water/NaCl). 4-Methyl-3-penten-2-one (mesityl oxide) (1.2 mol, 118 g) in absol. ether (250 ml) is dropped in over a period of 3 - 4h. The reaction mixture is stirred for 1 h at 0°C, left overnight at room temperature and re-cooled to 0°C. Ice water (100 g) is carefully stirred into the solution during 2 - 3h, the temperature being kept below 10°C. As soon as the evolution of gas has ceased and the temperature does not rise further, the mixture is efficiently stirred into a solution of ammonium chloride (85 g) in water (85 ml). After settling of the precipitate the clear ether solution is decanted (*Note 1*) and the precipitate digested with ether (3 ×). The combined organic phase is washed with water containing some K₂CO₃ (*Note 2*), washed and dried. After removal of the solvent the remaining oil is distilled at the Kugelrohr (water pump vacuum), the temperature not exceeding 80°C (*Note 3*), to give 1 (95 – 110 g, 70 – 80%). – 60 MHz ¹H NMR (CCl₄): $\delta =$ 1.28 (s, 6H), 1.65 (m, 3H), 1.82 (m, 3H), 2.22 (s, 1H, OH), 5.27 (m, 1H).

Note 1: If the ether solution turns darker (orange-red-black), further work up should proceed as quickly as possible, otherwise substantial decomposition occurs. Darkred to black solutions contain hardly any product allyl alcohol, but mainly diene and polymers.

Note 2: Distilled water appears to promote decomposition.

Note 3: However, two samples were distilled at the Kugelrohr without noticeable decomposition at 100 °C and higher pressure. The presence of some solid K_2CO_3 in the distillation flask seems advisable. The allyl alcohol is also oxygen sensitive, especially during work up.

Acid Catalyzed Two Phase Reaction of Cyclopentadiene and 2,4-Dimethyl-3-penten-2-ol (1): 1 (2.85 g, 25 mmol) and cyclopentadiene (3.3 g, 50 mmol) in pentane (5 ml) were stirred with water (5 ml) containing p-toluenesulfonic acid (2.4 g, ca. 13 mmol) at 0 and 25 °C as specified in Table 1. The reaction mixture was worked up by neutralizing with aqueous NaHCO₃, separating the organic phase and extracting the aqueous layer with three portions of pentane. The collected organic phase was washed with water, dried (Na₂SO₄), and the solvent removed at reduced pressure to leave an oil which was filtered over silica gel (25 g) with pentane (ca. 200 ml) as eluent. The less polar product olefins were collected. After elution with ether (100 – 150 ml) the alcoholic eluates were dried (Na₂SO₄), freed from solvent, and distilled at the Kugelrohr (cf. Table 1). Chromatography of the product alcohols (4.4 g) over silica gel (200 g) with light petroleum (bp. 40 – 60 °C)/ether (10 vol %) gave 5 isomers in the sequence of increasing polarity (on silica gel and also on GC (CWAX 20M)): endo-4 < exo-4 < 2a < 2b < 2c. α, α, 3, 3- Tetramethylbicyclo[2.2.1]hept-5-ene-2-methanol, endo epimer (endo-4): 0.54 g, colorless solid at room temperature. - 90 MHz ¹H NMR (CCl₄): $\delta = 0.95$ (s, 1 H), 1.08 (s, 3 H), 1.19 (s, 3 H), 1.22 (s, 3 H), 1.38 (s, 3 H), 1.32 [d (J = 8 Hz) of t (J = 1.7 Hz), 1 H], 1.60 [d (J = 8 Hz) of t (J = 1.5 Hz), 1 H], 1.79 (d, J = 3 Hz, 1 H), 2.17 - 2.31 (m, 1 H), 2.80 - 2.95 (m, 1 H), 6.07 - 6.28 (m, 2 H). In (CD₃)₂SO solvent the OH proton appeared as a singlet at 3.65 ppm. - MS (70 eV, room temperature): $m/e = 180 (2\%, M^+)$, 165 (2), 162 (3), 147 (3), 107 (11), 105 (8), 99 (76), 97 (71), 93 (9), 91 (9), 81 (17), 79 (24), 77 (13), 66 (100).

α, α, 3, 3-Tetramethylbicyclo[2.2.1]hept-5-ene-2-methanol, exo epimer (exo-4): 0.56 g, isolated as a colorless oil containing endo-4. Spectra were measured on the last fraction richest in exo-4. – 90 MHz ¹H NMR (CCl₄): $\delta = 0.93$ (s, 3H), 1.29 (s, 6H), 1.35 (s, 3H), 0.93 – 1.35 (m, 2H), 1.72 – 1.90 (m, 1H), 2.15 – 2.32 (m, 1H), 2.59 – 2.70 (m, 1H), 6.02 (dd, J = 3 and 5.8 Hz, 1H). In (CD₃)₂SO solvent the OH proton appeared as a singlet at 4.04 ppm. – MS (70 eV): $m/e = 180 (2\%, M^+)$, 165 (2), 162 (3), 147 (5), 121 (4), 119 (5), 107 (11), 105 (9), 99 (100).

Independent Synthesis of endo- and exo-4: Methyl iodide (14.2 g, 0.10 mol) in absol. ether (50 ml) was added dropwise to magnesium turnings (2.4 g, 0.10 mol) in absol. ether (50 ml), the reaction solution boiling gently and after complete addition, being refluxed for 1 h. Bicyclic ketone 9^{5}) (9.84 g, 0.060 mol) in absol. ether (50 ml) was added dropwise at $0-5^{\circ}$ C for 1-2h. After being stirred for 1 h at 0°C and 12 h at room temperature the solution was cooled to 0°C and worked up by carefully adding ice water (5 ml) such that the temperature did not exceed 10°C (the product alcohols being dehydrated easily). After addition of NH₄Cl (5 g) the solution was decanted and the precipitate digested three times with ether. The combined ether layer was washed with water, dried (Na₂SO₄), and the solvent evaporated to leave a residue which was distilled at the Kugelrohr (80-100°C/ca. 1 Torr). Starting from 9 (endo: exo = 2.4:1) colorless alcohol 4 (9.63-9.85 g, 90-91%) was obtained, solid at room temperature. 9 (endo: exo = 1:2.4) gave 4 (9.70-9.85 g, 90-91%) as a colorless oil. The alcohols were separated by chromatography on silica gel and by GC (CWAX 20M) as described above.

C12H200 (180.3) Calcd. C 79.94 H 11.18 Found C 79.80 H 11.02

4 and 5-(1,1,3-Trimethyl-2-butenyl)-2-cyclopenten-1-ols (2a, b, c): The least polar 2a was a minor isomer and could not be isolated pure. Unlike endo-4 and exo-4 these cyclopentenols are pleasant smelling liquids. $-90 \text{ MHz}^{-1}\text{H} \text{ NMR} (\text{CDCl}_3)$: inter al. $\delta = 1.12$ (s, 3H), 1.16 (s, 3H), 1.69 (d, J = 1.5 Hz, 3H), 1.76 (d, J = 1.5 Hz, 3H), 5.66 - 5.96 (m, 2H). - GC-MS (70 eV, room temperature): m/e = 165 (1%, M⁺ - 15), 162 (4), 147 (8), 123 (88), 119 (9), 109 (30), 107 (8), 105 (12), 99 (20), 97 (100), 95 (23), 91 (16), 83 (19), 82 (44), 81 (21), 79 (16), 77 (14), 69 (28), 67 (18), 65 (10), 57 (60), 55 (93), 53 (20).

Isomer 2b: 90 MHz ¹H NMR (CCl₄): $\delta = 1.05$ (s, 3H), 1.07 (s, 3H), 1.0–1.44 (m, 1H), 1.67 (d, J = 1.5 Hz, 3H), 1.71 (d, J = 1.5 Hz, 3H), 1.9–2.67 (m, 2H), 1.44 (s, 1H (OH)), 4.54–4.76 (m, 1H), 5.01–5.14 (m, 1H), 5.74 (s, 2H) [in CCl₄ and (CD₃)₂SO this signal appears as a singlet, in CDCl₃ as a multiplet]. – MS (70 eV): $m/e = 180 (2\%, M^+)$, 165 (3), 162 (2), 147 (5), 97 (100). – GC-MS: 162 (1‰, M⁺ – 18), 147 (1), 97 (100), 91 (3), 81 (3), 79 (3), 77 (3), 69 (14), 67 (3), 65 (3), 57 (9), 55 (53), 53 (7).

Isomer 2c: 90 MHz ¹H NMR (CCl₄): $\delta = 1.02$ (s, 3 H), 1.04 (s, 3 H), 1.64 (m, J = 1.5 Hz, 3 H), 1.74 (m, 3 H), 1.60 – 1.90 (m, 2H), 2.78 – 3.03 (m, 2H), 4.59 – 4.80 (m, 1H), 4.92 – 5.09 (m, 1H), 5.80 (s, 2H) [in CCl₄ and (CD₃)₂SO this signal appears as a singlet, in CDCl₃ as a multiple]. – MS (70 eV, room temperature): $m/e = 180 (1\%, M^+)$, 165 (2), 162 (3), 147 (8), 123 (8), 119 (5), 107 (5), 105 (5), 97 (100).

 $C_{12}H_{20}O$ (180.3) Calcd. C 79.94 H 11.18 Found C 79.97 H 10.81 Chem. Ber. //4 (1981) Traces of the three bicyclic olefins *endo*-5, *exo*-5, and 6 as well as 3a, b were first of all isolated from the pentane eluates after preparative GC and identified by ¹H NMR spectroscopy (Table 1). Their structures were confirmed by independent syntheses (cf. Scheme 2 and below).

The olefin fraction of the two phase equilibration at 50 °C (Table 2) contained two isomeric 4and 5-(1,1,3-trimethyl-2-butenyl)-1,3-cyclopentadienes in differing proportions (1.6:1 to 2.7:1). The following signals were assigned to isomer **3a**: 90 MHz ¹H NMR (CDCl₃): $\delta = 1.29$ (s, 6H), 1.69 (m(?), 6H), 2.82 - 2.90 (q, 2H), 5.22 - 5.40 (m, 1H), 5.94 - 6.55 (m, 3H). **3b**: 1.28 (s, 6H), 1.64 - 1.69 (6H), 2.90 - 2.98 (q, 2H), 5.22 - 5.44 (m, 1H), 5.94 - 6.55 (m, 3H).

Independent Synthesis of 5,5-Dimethyl-6-(1-methylethenyl)bicyclo[2.2.1]hept-2-ene (5) (endo and exo epimer): Following the methylenation method of Nozaki et al.⁶⁾ titanium tetrachloride (2.09 g, 11 mmol) followed by absol. dichloromethane (11 ml) were dropped into a suspension of zinc dust (2.95 g, 45 mmol) in dibromomethane (2.60 g, 15 mmol) and absol. tetrahydrofuran (50 ml) under nitrogen for ca. 15 min at room temperature. The solution warmed and turned dark brown. After a further 15 min bicyclic ketone 9^{5} (1.64 g, 10 mmol) in absol. tetrahydrofuran (10 ml) was added dropwise. The resulting suspension was stirred for 24h at room temperature and added to solid NaHCO₃ (3 g). After dropping in a little water the solution was decanted, the remaining precipitate being digested three times with dichloromethane. The combined organic phase was washed with water, dried (MgSO₄), and the solvent removed to leave an oily residue which was distilled at the Kugelrohr (80 – 100°C/water pump). Starting from 9 (endo: exo = 2.4:1) colorless 5 (1.50 g, 93%) was obtained. Similarly, 9 (endo: exo = 1:2.4) gave 5 (1.40 g, 86%).

5,5-Dimethyl-6-(1-methylethenyl)bicyclo[2.2.]/hept-2-ene (endo-5): 90 MHz ¹H NMR (CCl₄): $\delta = 0.74$ (s, 3 H), 1.28 (s, 3 H), 1.67 (m, J = 1 Hz, 3 H), 1.28 – 1.81 (m, 2H), 2.21 – 2.44 (m, 2H), 2.74 – 2.91 (m, 1 H), 4.55 – 4.70 (m, 2 H), 6.0 – 6.27 (m, 2 H). – MS (70 eV): m/e = 162 (5%, M⁺), 147 (8), 119 (10), 106 (12), 97 (100), 92 (19), 82 (73). exo-5: 90 MHz ¹H NMR (CCl₄): $\delta = 0.98$ (s, 3 H), 1.01 (s, 3 H), 1.74 (m, J = 1 Hz, 3 H), 1.28 – 1.90 (m, 3 H), 2.23 – 2.34 (m, 1 H), 2.62 – 2.74 (m, 1 H), 4.58 – 4.71 (m, 1 H), 4.71 – 4.80 (m, 1 H), 6.0 – 6.27 (m, 2 H). – MS (70 eV): m/e = 162 (5%, M⁺), 147 (10), 119 (13), 105 (12), 96 (100), 91 (24), 81 (73).

C12H18 (162.3) Calcd. C 88.82 H 11.18 Found C 88.67 H 11.18

6-Isopropylidene-5,5-dimethylbicyclo[2.2.1]hept-2-ene (6) was obtained most conveniently via its AgNO₃ complex (cf. below). -90 MHz ¹H NMR (CCl₄): $\delta = 1.04$ (s, 3H), 1.30 (s, 3H), 1.68 (s, 6H), 1.36 - 1.50 (m, 1H), 1.59 - 1.68 (m, 1H), 2.26 - 2.40 (m, 1H), 3.40 - 3.53 (m, 1H), 5.92 - 6.14 (m, 2H). - MS (70 eV): m/e = 162 (53%, M⁺), 147 (61), 121 (32), 119 (33), 96 (75), 91 (49), 81 (100).

C12H18 (162.3) Calcd. C 88.82 H 11.18 Found C 88.28 H 11.18

 $AgNO_3$ complex of 6: A mixture of the olefins 3, 5, and 6 (ca. 2 g, cf. Table 4), which had been obtained from an equilibration experiment (Table 2), was dropped into a solution of silver nitrate (2 g) in distilled water (2 ml). The resulting mixture, which was shaken gently, became warm. After cooling to room temperature (0.5h) the lightcolored paste was suction filtered for 1 h to achieve best possible drying. The aqueous phase and the collected mother liquor were diluted with water (5 ml each) and extracted three times with pentane. The combined extracts were washed with water and dried (Na₂SO₄). After evaporation of the solvent the remaining oil was distilled at the Kugelrohr (80 – 100 °C/water pump) (cf. Table 4).

The complex was dissolved in methanol at 40 °C and the resulting solution filtered. On cooling to room temperature the colorless complex was precipitated (see Note below), suction filtered, washed with a little methanol, and dried at the water pump, whilst the mother liquor was concentrated and recycled. (Note: The silver nitrate complex of 6 must be precipitated slowly, as bicyclic olefin 5 is co-precipitated otherwise). Complex m.p. 132.5 °C. – 90 MHz ¹H NMR

 $(CD_3CN): \delta = 1.05$ (s, 3 H), 1.30 (s, 3 H), 1.68 (6H), 1.30 - 1.47 (m, 1 H), 1.59 - 1.74 (m, 1 H), 2.32 - 2.46 (m, 1 H), 3.37 - 3.48 (m, 1 H), 6.02 - 6.26 (m, 2 H). A trace of *endo*-5 was still present (cf. Table 4, footnote a and b).

(C12H18)2 · AgNO3 (332.2) Calcd. C 58.30 H 7.34 N 2.83 Found C 58.53 H 7.43 N 2.92

Recovery of 6 by decomposition of its $AgNO_3$ complex: The complex was dissolved in aqueous ammonia and the solution extracted three times with little pentane. The combined organic phase was washed with water and dried over magnesium sulfate. After removal of the solvent the remaining oil was distilled at the Kugelrohr, 0.70 g of the complex gave 0.32 g of olefin 6 (70%) and 1.14 g of the complex gave 0.53 g of 6 (71%).

A mixture (2.0 g) of alcohols 2a, b, c, 4, 7, and tricyclic ether 8 from an equilibration experiment (Table 2) was chromatographed on silica gel (80 g) with light petroleum/ether (10 vol%) as eluent, the polarity increasing along the series 8 < endo-4 < exo-4 < 2a < 2b < exo-7 < 2c.

2,2,4,4-Tetramethyl-5-oxatricyclo[$4.2.1.0^{3.7}$]nonane⁺⁾ (8): 0.10 g (ca. 2%). - 90 MHz ¹H NMR (CDCl₃): δ = 1.01 (s, 3H), 1.17 (s, 3H), 1.20 (s, 3H), 1.41 (s, 3H), 1.24 - 1.80 (m, 6H), 2.93 - 3.07 [m(br t centered on 3.00), 1H], 4.25 (dd, J = 7 Hz, 5 Hz, 1H).

7,7-Dimethyl-1-(1-methylethyl)tricyclo[2.2.1.0^{2.6}]heptan-3-ol (exo-7): 90 MHz ¹H NMR (CDCl₃): $\delta = 0.84$ (d, J = 7 Hz, decoupling expt., 6H), 0.92 (s, 3H), 0.98 (s, 3H), 1.07 - 1.76 (m, 5H), 1.94 (sept, J = 7 Hz, decoupling expt., 1H), 4.25 (t, J = 1.7 Hz, 1H). In (CD₃)₂SO: 0.81 (d, J = 7 Hz, 3H), 0.82 (d, J = 7 Hz, 3H), 0.87 (s, 3H), 0.93 (s, 3H), 0.98 - 1.80 (m, 5H), 1.90 (sept, J = 7 Hz, 1H), 4.00 - 4.11 (m, 1H), 4.23 (d, AB type, J = 4 Hz, 1H) (OH: exchange after addition of CF₃CO₂H). - MS (70 eV): m/e = 180 (28%, M⁺), 165 (10), 162 (10), 147 (14), 137 (100), 122 (26), 121 (30), 119 (26), 109 (85), 107 (50), 105 (25), 97 (91), 95 (61), 93 (42), 91 (67).

C12H20O (180.3) Calcd. C 79.94 H 11.18 Found C 80.02 H 10.65

Heating of the bicyclic alcohols 4 at reflux produced also an isomer (*endo*-7?) (Table 2, footnote f): ¹H NMR (CDCl₃) inter al. 2.67 – 2.75 (m, 1H), 3.58 – 3.71 (m, 1H). In (CD₃)₂SO solvent the OH proton appeared as a doublet at 4.52 (J = 4 Hz).

Ketone $C_{12}H_{18}O$: After bicyclization of the allylcyclopentenols **2a**, **b**, **c** (cf. Table 3, footnote b) a ketone (60 mg) was isolated by chromatography. - 90 MHz ¹H NMR (CDCl₃): $\delta = 7.66$ (dd, J = 2.3 Hz, 6 Hz, 1 H), 6.11 (dd, J = 2.3 Hz, 6 Hz, 1 H), 5.0-5.1 (m, 1 H). - GC-MS (70 eV, room temperature): m/e = 178 (< 1%, M⁺), 163 (< 1), 135 (< 1), 121 (1), 97 (100), 91 (3), 81 (4), 79 (5), 77 (5), 69 (18), 67 (4), 65 (3), 57 (11), 55 (68), 53 (18). - IR: 1714 cm⁻¹ (C = O).

 Nomenclature of Chem. Abstr.: Hexahydro-2,2,7,7-tetramethyl-3,5-methano-2H-cyclopenta[b]furan.

- ²⁾ See also H. Vathke-Ernst and H. M. R. Hoffmann, Angew. Chem. **92**, 861 (1980); Angew. Chem., Int. Ed. Engl. **19**, 827 (1980).
- ³⁾ H. M. R. Hoffmann and J. Matthei, Chem. Ber. 113, 3837 (1980).
- ⁴⁾ A. Wassermann, Diels-Alder Reactions, Elsevier Publishing Company, Amsterdam 1965, and earlier work by this author.
- ⁵⁾ G. Buchbauer, G. W. Hana, and H. Koch, Monatsh. Chem. 107, 387 (1976).
- ⁶⁾ H. Takai, Y. Hotta, K. Oshima, and H. Nozaki, Tetrahedron Lett. 1978, 2417; see also D. Hasselmann, Chem. Ber. 107, 3486 (1974).
- ⁷⁾ P. von R. Schleyer, J. Am. Chem. Soc. 80, 1700 (1958).
- ⁸⁾ H. M. R. Hoffmann, D. R. Joy, and A. K. Suter, J. Chem. Soc. B 1968, 57.
- ⁹⁾ H. M. R. Hoffmann and H. Vathke, Chem. Ber. 113, 3416 (1980).
- ¹⁰⁾ R. Jacquemain, Ann. Chim. (Paris) 19, 552 (1944) [Chem. Abstr. 40, 4022⁵ (1964)].

[285/80]

Chem. Ber. //4 (1981)

¹⁾ Part 25: H. M. R. Hoffmann and H. Vathke-Ernst, Chem. Ber. 114, 1182 (1981).